UNCLASSIFIED

UNCLASSIFIED

THIS PAGE IS UNCLASSIFIED

NOTICE: THIS DOCUMENT CONTAINS INFORMATION AFFECTING THE
NATIONAL DEFENSE OF THE UNITED STATES WTTHIN THE MEANING OF THE ESPIONAGE LAWS, TITLE 18, U.S.C., SECTIONS 793 and 794. THE TRANSMISSION OR THE REVELATION OF ITS CONTENTS IN ANY MANNER TO AN UNAUTHORİZED PERSON IS PROHIBITED BY LAW.

POWER PLANT

Number: MAIN
Six Turbonrop Engines AUXILIARY
(VTOL Pitch and Yaw Control) One Turboject Engine
Models:

MAIN

Allison 550-B1
AUXILIARY

Manufacturers:
MAIN

General Motors Corp. AUXILIARY
General Electric Corp.

ENGINE RATINGS

Static Rating at Sea Level - Maximum Main (Shaft HP - total) $31,008 \mathrm{HP}$ Jet Thrust 830 lb

Auxiliary

(Jet Thrust) $\quad 2,450 \mathrm{lb}$
Vertical Thrust - VTOL Cond. $\left(6000 \mathrm{ft}-95^{\circ} \mathrm{F}\right)$ with water injection '72,100 lb

DTMENETONS	
Length	81 ft 1 in .
Height	33 ft 11 mm .
Span (over-all)	97 ft 8 in .
Wing Area (neglecting ducts)	$1220 \text { sq. ft. }$
Wing Aspect Ratio	5.8
Wing Section	NACA 64A412
Wheel Tread (aft gear) 157 in .
Wheelbase	366 in.

DIMENSIONS

Mission and Description

DESCRIPTION
The basic mission required a radius of 425 miles at 300 mph with an initial vertical take-off. An 8000 pound payload is carried cut and 4000 pounds back. The general flight plan of all missions was quite similar to the basic mission:

1. Take-off at 6000 ft and $95^{\circ} \mathrm{F}$ - VTO or STO depending on initial loading. All landings and subsequent take-ofis are vertical. Payload out is 8000 pounds or greater
2. Climb to cruise altitude; fly 80% of radius.
3. Descend to sea level; fly remaining 20%.
4. Land vertically at 6000 ft and $95^{\circ} \mathrm{F}$; remove payload; reload a 4000 pound payluad. NO FUEL IS ADDED.
5. Take-off vertically at 6000 ft and $95^{\circ} \mathrm{F}$ and return.
6. Fly first 20 at sea level.
7. Climb to cruise altitude for remainder of distance.
8. Descend and land vertically at 6000 ft and $95^{\circ} \mathrm{F}$ holding a 10% fuel reserve

BASIC MISSION

1. Minimum vertical take-off gross weight to accomplish this mission
2. Minimum cruise altitude to accomplish this mission.
3. Highest allowable velocity at altitude and 300 mph at sea level to accomplish this mission.
BASIC MISSION VARIATIONS
4. High-speed mission: Cruise at 455 mph at altitude and sea level.
5. Maximum VTO Radius with take-off at sea level standard; cruise for maximura radius at 300 mph at sea level and altitude.
MISSION WITH INITIAL STO - all other landings and take-offs are vertical
6. Maximum radius with 8000 -pound pay load out.
7. Maximum payload out for 425 miles radius.
8. 450 mph cruise: maximum radius with an 8000 -pound payload out.

CARGO CAPACITY

2500 cubic feet

8000 pounds basic
16,720 pounds maximum

WEIG HTS

Max. Vertical Take-off 06000 ft and $95^{\circ} \mathrm{F}$

Max. Vertical Landing @ 6000 ft and $95^{\circ} \mathrm{F}$

Weight Empty

Internal

$$
2308 \text { gal. } \quad 6.5 \mathrm{lb} / \mathrm{gal} \quad 15,000 \mathrm{lb}
$$

ELECTRONICS

BELL DI8I
CONFIDENTIAL
MAY 1956

Range vs Hovering Time

PEREORMANCE		
COMBAT RADIUS	FERRY RANGE	MAXIMUM SPEED
425 miles at 300 mph ; 20% at sea level	1120 iniles at 320 mph Cruise at $30,000 \mathrm{ft}$.	520 mph at $35,000 \mathrm{ft}$.
CLIMB	CEILING	TAKE-OFF
11,710 ft per min at sea level, radius point takeoff weight, and military power	$52,000 \mathrm{ft}$ at 100 ft per min, radius point takeoff weight, and military power	No ground run Vertical take-off
	HOVERING ENDURANCE	STALLING SPEED
	$\begin{aligned} & \text { Maximum }-70 \mathrm{~min} \\ & \text { Minimum }-6.24 \mathrm{~min} \end{aligned}$	143 mph at take-off weight 131 mph at radius point take-off weight
LOAD	WEIGHTS	TIME TO CLIMB
Crew (3) 645 lb Oil 328 lb Fuel $13,290 \mathrm{lb}$ Payload $8,000 \mathrm{lb}$	Initial take-off $67,380 \mathrm{lb}$ Radius point take-off , 56,000 lb,	

